
WEF - Web Exploit Finder
Automatic Drive-By-Download – detection in a virtualized environment

Thomas Müller Benjamin Mack Mehmet Arziman
Hochschule der Medien (HdM), Stuttgart

{tm026,bm022,ma018}@hdm-stuttgart.de

Abstract

Much has been written about security vulnerabilities
in Microsoft Internet Explorer and Mozilla Firefox. Some
of these security threats are designed to execute
malicious code in the browser. Known as Remote-Code-
Execution-Attacks, these threats typically exploit a
specific utilization of buffer overflows in an application.
They are not only limited to browsers but almost all
services and applications that are part of the internet or
that use it as a communication platform.

We focus on internet browsers here because of two
key problems. First of all, browsers are the primary user
interfaces to the World Wide Web. As the rendering
engine transforms hypertext into a visual presentation for
human, all parts of a webpage have to be interpreted and
processed further by the browser—which leads to a
complex and error-prone architecture, especially in
regard to mobile code (JavaScript, Java, ActiveX, XUL
etc.). Secondly, the browser is arguably the most
frequently used program in the family of potentially
vulnerable software. In contrast to server-based software,
a browser is often used by non-technical users, many of
whom neither understand the risks or know possible
counteractive measures. And even experts are often
exposed to the risk of an attack.

In view of this, our goal was to develop a system that
automatically detects and identifies malicious websites.

In addition, this system would also be able to serve as
a platform for other security and sandbox-tests. One use-
case is to automatically analyze various kinds of malware
in a secure and easy maintainable virtualized
environment.

1 Introduction

To begin with, we started by discussing some
important questions and project requirements:

 How should we define the expression
“malicious” for our project?

 What options are available for detecting
malicious web content?

 What design requirements are needed for an
adequate system?

Our project defines a web page that downloads,
installs and executes malicious software (a virus, worms,

Trojan horses, keyloggers, etc) on a client as
“malicious”. We concentrate on malicious software that
installs without any user interaction, making it hard to
identify even for advanced users (Drive-By-Downloads).

We limited our focus in order to find web pages that
actually take advantage of security bugs in the browser.
At this stage, our objective was not to deal with web
pages that trick the user or offer infected software as
downloads. However, we’ve considered how we could
add this functionality at a later date.

To find a way to detect malicious websites, you
have to put yourself in the position of an attacker. What
are an attacker’s goals and how can he or she achieve
them? An attacker wants to compromise a user’s
computer—to do this, he or she needs to change the state
of the PC in some way. For instance, consider a typical
scenario:

 The attacker executes his own code (shell code)
with help of a buffer overflow in the browser.

 Since the functionality is very limited, given
the small amount of code that can be included
in the buffer overflow, he usually tries to
download more code from the web and run it.

This small application is often called a “Dropper” or
“Downloader”, since it downloads the actual malware to
the system and includes it with some registry entries in
every following system boot.

To discover such changes to a system there are at
least two different options:

 Intrusion Detection: Determine the state of the
system before and after a visit to a suspicious
internet page and compare both results. You
can use a list of all relevant files and registry
entries coupled with their corresponding
checksums to determine the “state” of a system.
In this way, new or modified files can be
detected easily. The key difficulties with this
technique are the huge delays involved in
detecting a threat as well as poor performance
and scalability.

 Rootkit: Detection using modifications to the
operating system. This technique monitors and
evaluates the relevant system calls. Such
changes to the operating system are not

1

designated and require a deeper interaction with
the kernel. This procedure is also often used in
rootkits and is typically called a rootkit itself.

We decided to use the rootkit technique due to its
performance advantages.

In addition, to use the system as a research platform
it needs to satisfy the following requirements:

 It should work automatically, requiring as little
user interaction as possible.

 It should be possible to control the system
remotely, such as with a web interface.

 It should be scalable and extensible.

 It should be secure, with components to ensure
the system itself cannot be infected by
malicious websites.

2 Limitations and Assumptions

To detect malicious webpages, we decided to use the
following configuration in our test system:

 Windows XP Professional without any Service
Packs

 No security updates installed

 Windows running as an Administrator

 Using Microsoft Internet Explorer 6

 Scripting and Java both activated

We chose this configuration to offer a broad attack
surface. In theory, this should simulate the worst case
scenario, but it also reflects a common configuration for
many users.

3 System Architecture

To meet the requirements involved, our system
architecture includes the following components:

 A virtualization layer, using VMware Server,
to protect the system and to check multiple
pages simultaneously.

 A specialized rootkit to modify the operating
system and detect the malicious pages.

 A Browser Control to manage the rootkit and
Internet Explorer as well as to communicate
with our management console.

 A Management Console to configure and
control the entire system.

4 Technologies Used

For the operating system we used CentOS Linux (a
fork of RHEL) on both machines. We decided to use
J2EE/Java for the implementation of our management
console. In addition, we used JBoss Application Server
as Middleware, EJB 3.0 for the business logic and the
data model as well as the Java Server Faces (JSF) for the
Web-GUI.

We wrote the Browser Control and its component in
C++ as a Windows-MFC application. We used SOAP
for the communication protocol between the
Management Console and our Browser Control.

We implemented the virtualization layer with the free
server software VMware Server. The scripts for
maintaining the server are a combination of C
applications and “bash” scripts.

Since we decided to use “SSDT-Hooking” as the
hooking-technique (a kind of redirection of system calls)
the rootkit needed to have access to the protected
memory of the kernel. For this reason, we implemented
it as a system driver in C using the MS-DDK (Driver
Development Kit).

5 Functionality

Users can control and monitor the system via the
Management Console (MC) web interface. To get
started, the user enters or imports a list of URLs that the
system will check. In later versions, this task can be
performed by a web crawler that extracts linked URLs
from webpages that are already marked as malicious.

2

SSDT - System Service Descriptor Table

ServiceTable

ArgumentTable

ServiceLimit

CounterTable

SSDT

ZwCreateFile()

-

-

SST

Ntoskrnl.exe

ZwCreateFile()

1

ServiceTable

ArgumentTable

ServiceLimit

CounterTable

SSDT

ZwCreateFile()

-

-

SST

Ntoskrnl.exe
ZwCreateFile()

CALL(ZwCreateFile())

Hook Function
<prolog>

<epilog>

1

2

3

SST – System Service Table

Before:

After:

Figure 2: Functionality of the SSDT-Hooking

LINUX (CentOS)

JBoss Application Server

DHCP
Server

Web-GUI
(JSF)

Business
Logic

(EJB 3.0)

LINUX (CentOS)

Microsoft
Internet
Explorer

VMware Server

 Windows XP (virtualisiert)

SOAP
WebServices

(XFire)

Browser Control

Rootkit
(Kernel-Mode-Driver)

SOAP
Client

Rootkit
Control

IE
Remoting

Remoting
Skripte

VMware
Control

DB
(MySQL)

Management Console

Figure 1: Architecture of the system

In order to avoid jeopardizing security or interrupting
performance with constant re-installations, the system
visits the URLs within a sandbox. This sandbox is
implemented as a VMware Server guest image. It is
cloned and configured with some of our own bash scripts
and the internal VMware C-API. This procedure can be
repeated n-times, depending on how many virtual
Windows XP instances are used to check URLs
simultaneously. This also depends on the performance of
the VMware host system. To guard the cloning process,
the scripts notify the state of the sandbox to the
Management Console which shows this on the web
interface.

The sandbox images are registered and booted
through the VMware Server. Once the boot process is
finished an additional script creates a snapshot of the
current state, copies the most recent version of our
Browser Control as well as the rootkit in the sandbox
and runs the Browser Control. By using the snapshot
technique, the system can do a rollback once a system is
infected. In contrast to deleting the sandbox and creating
a new one (which takes about one minute), this process
takes only a few seconds.

The Browser Control component first loads the
Rootkit as a windows driver in the Windows XP kernel
space. After that, the Browser Control (BC) registers
itself with the sandbox and displays the IP address in the
Management Console. At this point, the systems loops
through the following steps:

1. BC asks the MC for the next URL via SOAP.

2. BC sends the rootkit a message to trigger the
system monitor. All further relevant system
calls (CreateFile, DeleteFile, Execute, etc) are
then redirected and observed.

3. BC starts Internet Explorer and hands it the
URL it receives.

4. Once the webpage is loaded completely or a
timeout is received for this action, the browser
is closed and monitoring stops.

5. Now it is time for the BC to ask the Rootkit for
the results list. If the page was “clean” this list
is empty, otherwise the list includes all
suspicious system calls with time/date
information as well as the process id (PID) of
the corresponding application.

6. If the list is empty, our BC informs the MC
which then marks the URL as clean in the
database. If the list includes entries, these are
transferred to the MC as well. If the sandbox is
marked as infected, another script is called to
restore the snapshot that was created at the start.
After copying the BC and Rootkit and re-
registering with the MC, the system returns to
step one.

6 Outlook

The system is being implemented by the three
developers in their spare time, with plans to release it as
an open source software - project afterwards. After the
initial version is complete, the focus will shift to
integrating the URL-crawler as well as further
development of the rootkit. When fully implemented,
the system will be able to search not only for malicious
webpages automatically but also for relationships
between malicious websites and their respective owners.

3

Microsoft
Internet

Explorer 6

 Windows XP (virtualisiert)Rootkit
(Kernel-Mode-Driver)

SOAP
Client

Rootkit
Control
(IOCTL)

IE
Remoting● register()

● getFilterList()
● getNextUrl()
● reportResult()

SOAP

Core
(Business

Logic)

● startIE()
● closeIE()
● goToURL()
● navigate()

● monitors IE Process

● load Rootkit-Driver
● send filter list
● start and stop hooking
● request result

Figure 3: Design and Functions of the Browser Control - Part

